Hệ thức lượng trong tam giác vuông là kiến thức cơ bản cần thiết cho học sinh lớp 9. Để giải bài tập một cách nhanh nhất và hiểu vấn đề thì bạn cần nắm vững các công thức được chúng tôi tổng hợp ngay dưới đây.
Trong đề bài ta có một hình tam giác vuông ABC và dữ liệu được cho sẵn là vuông tại A cùng với AH là đường cao của tam giác này, khi đó ta có các hệ thức mà các bạn học sinh lớp 9 cần nhớ liên quan sau đây:
Các hệ thức liên quan đến hệ thức lượng trong tam giác vuông và tam giác thường
Một số kiến thức quan trọng có liên quan đến các công thức lượng giác và hệ thức lượng tam giác vuông mà chúng tôi chuẩn bị nhắc tới như sau:
a) Định nghĩa về tỉ số lượng giác
b) Định lý về tỷ số lượng giác
Trong một tam giác vuông được cho sẵn , nếu hai góc phụ nhau thì có công thức áp dụng giải bài tập như: sin góc này bằng cos góc kia, tan góc này bằng cot góc kia và ngược lại.
c) Các so sánh cần nhớ của hệ số lượng giác
Cho 2 góc alpha và belta được nhận diện là 2 góc nhọn của một tam giác vuông tức là hai góc có tổng số đo là 90 độ và alpha bé hơn belta thì:
Các định lý lượng giác trong tam giác vuông được chúng tôi tổng hợp để các bạn học dinh dễ học và dễ hình dung hơn:
Trong một tam giác vuông bất kì, ta luôn có bình phương mỗi cạnh góc vuông bằng tích của cạnh huyền trong tam giác đó và hình chiếu tương ứng của cạnh góc vuông đó ứng với cạnh huyền.
b² = ab’ ; c² = ac’
Trong một tam giác vuông bất kì, bình phương đường cao ứng với cạnh huyền sẽ bằng tích hai hình chiếu của hai cạnh góc vuông tương ứng đó trên cạnh huyền.
h² = b’c’
Trong một tam giác vuông cho sẵn, tích hai cạnh góc vuông bằng tích của cạnh huyền tương ứng và đường cao nối từ đỉnh góc vuông của tam giác đó.
ah = bc
Trong một tam giác vuông được cho sẵn, nghịch đảo của bình phương đường cao ứng với cạnh huyền trong tam giác đó sẽ bằng tổng các nghịch đảo của bình phương hai cạnh góc vuông tương ứng.
Nếu α cho trước là một góc nhọn bất kỳ thì:
Dưới đây là một số dạng bài tập tiêu biểu đại diện cho việc áp dụng các hệ thức lượng trong tam giác vuông lớp 9 được nêu ra ở trên:
Phương pháp giải:
Vận dụng các phương pháp chứng minh đẳng thức: biến đổi để hai vế bằng nhau, từ giả thiết ban đầu dẫn đến đẳng thức đã được công nhận là đúng,… Vận dụng các định lý trong tam giác vuông, tam giác thường, các hệ thức lượng giác.
Phương pháp giải:
Vận dụng tính sin, cos, trung tuyến, diện tích và mối liên hệ giữa các đại lượng cần tính, các tam giác đặc biệt.
Phương pháp giải:
Vận dụng các hệ thức lượng giác, định lý, công thức diện tích, đường trung tuyến, các bất phương trình và hằng số cơ bản.
Phương pháp giải cụ thể:
Giải tam giác là tìm số đo các cạnh và góc còn lại trong tam giác khi biết giả thiết, vận dụng các hệ thức lượng, định lý, công thức diện tích, đường trung tuyến,... Bài toán thực tế giải được. bằng cách quay trở lại bài toán tam giác để xác định số đo cần thiết
Bài 1: Cho tam giác vuông ABC vuông tại A, có đường cao AH của tam giác vuông chia cạnh huyền thành hai đoạn thẳng có độ dài lần lượt là 3 và 4. Vận dụng các quan hệ đã học ở phần trên để có thể tính các cạnh. góc vuông của tam giác ABC như hình minh hoạ bên trên.
Lời giải: Ở bài toán này trước tiên ta cần xét các yếu tố dữ kiện mà bài toán đã cho. Lưu ý các góc vuông tương ứng và xác định đâu là cạnh huyền và góc nào là góc vuông. Sau đó quan sát các cạnh cần tính là thuộc cạnh nào của tam giác vuông. Sau đó, xem xét các dữ liệu có sẵn và chọn hệ số tương ứng để áp dụng. Đối với bài toán này ta sử dụng hệ thức giữa cạnh góc vuông và hình chiếu để tính toán theo yêu cầu của bài toán.
Bài tập 2: Cho tam giác ABC vuông tại A có cạnh góc vuông kề với góc 60 độ của tam giác vuông này bằng 3. Sử dụng bảng lượng giác các góc đặc biệt để tìm cạnh huyền và cạnh góc vuông còn lại (Lưu ý bạn cần phải làm tròn số vừa tính đến chữ số thập phân thứ tư nhé).
Giải: Một tam giác ABC vuông cân tại A thì trong 2 góc còn lại, góc lớn hơn là 60 độ và ngược lại là 30 độ. Khi đó cạnh đối diện của góc 60 độ đó bằng 3. Sau đó ta áp dụng từng công thức đã học trong bảng lượng giác để tính cạnh huyền và cạnh góc vuông còn lại.
Bài 3: Vận dụng kiến thức đã học viết các tỉ số lượng giác sau thành các tỉ số lượng giác của các góc nhỏ hơn 45 độ, gồm sin 60 độ, cos 75 độ, sin52 độ 30′, cot 82 độ, tan 80 độ.
Lời giải: Đây là dạng toán cơ bản khi học về tỉ số lượng giác của góc nhọn. Trong bài toán này ta chỉ cần vận dụng tính chất lượng giác của hai góc đối đỉnh trong một tam giác vuông. Sau đó thay đổi nó thành giá trị của góc tương ứng.
Trên đây là các thông tin tổng quan được chúng tôi tổng hợp lại về hệ thức lượng trong tam giác vuông và hướng dẫn một số lời giải chi tiết những bài tập liên quan. Hy vọng rằng qua những thông tin hữu ích trên có thể giúp bạn trong quá trình học bài và làm bài tập nhé.
Link nội dung: https://cmp.edu.vn/he-thuc-luong-trong-tam-giac-vuong-a56531.html